

Course Specification (Bachelor)

Course Title:	Nuclear	Physics
---------------	---------	---------

Course Code: MPHY26351

Program: Medical Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 1

Last Revision Date: 5 September 2023

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and As	sessment Methods4
C. Course Content	4
D. Students Assessment Activities	خطأ! الإشارة المرجعية غير معرّفة
E. Learning Resources and Facilities	5
E. Learning Resources and Facilities 1. References and Learning Resources	
-	6
1. References and Learning Resources	6

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (2 Lectures + 1 Laboratory)

2. Course type

 A.
 University □
 College □
 Department⊠
 Track□
 Others□

 B.
 Required ⊠
 Elective□
 Image: State of the state of

4. Course general Description

This course explores some properties of nuclei, nuclear model, radioactivity, nuclear magnetic resonance, magnetic resonance imaging and the basic experiments in nuclear physic.

5. Pre-requirements for this course (if any):

NA

6. Co- requirements for this course (if any):

NA

7. Course Main Objective(s)

Recognize properties of nuclear physics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	4	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	

otal

60

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize some properties of nuclei and their models	К2	Lecturing	Quizzes Homework Midterm exam
1.2	Recognize the radioactivity.	К2		Final exam
2.0		Skills		
2.1	Solve problems related to nuclear physics	S1	Solve problems	Quizzes Homework Midterm exam Final exam
2.2	analyze experimental data.	S2	Practices lab	Reports Practical exam
2.3	Communicate positively with others.	S4	Work group	Reports Presentation
3.0	Values, autonomy, and responsibility			
3.2	Ability to work in team effectively.	V3	Work group	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Some Properties of Nuclei Unit of energy and mass Charge and Mass The Volume and Density of a Nucleus Experiment #1.	6
2.	Some Properties of Nuclei The Size and Structure of Nuclei. Nuclear Stability. Experiment #2.	6
3.	Nuclear Model Nuclear Binding Energy Applying the Semi Empirical Binding-Energy Formula	6

	Experiment #3.	
	Nuclear Model	
4.	The Liquid-Drop Model.	6
	Experiment #4.	
	Nuclear Model	
5.	The Shell Model. Nuclear spin Experiment #5.	6
	Radioactivity	
6.	The Decay Processes Alpha Decay Beta Decay Experiment #6.	6
	Radioactivity	
7.	Carbon Dating Radioactive Dating Gamma Decay Experiment #7.	6
	Radioactivity	
8.	Natural Radioactivity Artificial radioactivity Nuclear Reaction Experiment #8.	6
	Nuclear Magnetic Resonance and Magnetic Resonance Imaging	
9.	Nuclear magneton Nuclear magnetic resonance Experiment #9.	6
	Nuclear Magnetic Resonance and Magnetic Resonance Imaging	
10.	The potential energy interaction Magnetic resonance imaging Experiment #10.	6
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 10	10 %
2.	First term exam	7: 8	10 %

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
3.	Second term exam	12: 13	10 %
4.	Practical exam	End of Semester	20 %
5.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Physics for Scientists and Engineers, 10th Edition, by Raymond A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, Boston USA, (2019). Nuclear Physics - Graduate Texts in Physics, 1st Edition, Anwar KAMAL, Springer Heidelberg New York Dordrecht London, (2014)
Supportive References	- Problems and Solutions in Nuclear and Particle Physics, Edited by Sergio Petrera, Springer Nature Switzerland AG., (2019).
Electronic Materials	- Blackboard. - PowerPoint presentations. - Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Laboratory equipment1. Operating voltage of the Geiger counter.2. Statistics of counting.3. Geiger tube efficiency.4. Resolving time.5. Beta decay energy.6. Gamma spectrometer7. Alpha spectrometer
Technology equipment	Projector or smart board
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	1
DATE	5 September 2023

